World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

West African Equatorial Ionospheric Parameters Climatology Based on Ouagadougou Ionosonde Station Data from June 1966 to February 1998 : Volume 27, Issue 6 (23/06/2009)

By Ouattara, F.

Click here to view

Book Id: WPLBN0003979656
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: West African Equatorial Ionospheric Parameters Climatology Based on Ouagadougou Ionosonde Station Data from June 1966 to February 1998 : Volume 27, Issue 6 (23/06/2009)  
Author: Ouattara, F.
Volume: Vol. 27, Issue 6
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Duchesne, P. L., Petitdidier, M., Fleury, R., Amory-Mazaudier, C., Ouattara, F., & Vila, P. (2009). West African Equatorial Ionospheric Parameters Climatology Based on Ouagadougou Ionosonde Station Data from June 1966 to February 1998 : Volume 27, Issue 6 (23/06/2009). Retrieved from

Description: Ecole Normale Supérieure, Université de Koudougou, BP 376 Koudougou, Burkina Faso. This study is the first which gives the climatology of West African equatorial ionosphere by using Ouagadougou station through three solar cycles. It has permitted to show the complete morphology of ionosphere parameters by analyzing yearly variation, solar cycle and geomagnetic activity, seasonal evolution and diurnal development. This work shows that almost all ionospheric parameters have 11-year solar cycle evolution. Seasonal variation shows that only foF2 exhibits annual, winter and semiannual anomaly. foF2 seasonal variation has permitted us to identify and characterize solar events effects on F2 layer in this area. In fact (1) during quiet geomagnetic condition foF2 presents winter and semiannual anomalies asymmetric peaks in March/April and October. (2) The absence of winter anomaly and the presence of equinoctial peaks are the most visible effects of fluctuating activity in foF2 seasonal time profiles. (3) Solar wind shock activity does not modify the profile of foF2 but increases ionization. (4) The absence of asymmetry peaks, the location of the peaks in March and October and the increase of ionization characterize recurrent storm activity. F1 layers shows increasing trend from cycle 20 to cycle 21. Moreover, E layer parameters seasonal variations exhibit complex structure. It seems impossible to detect fluctuating activity effect in E layer parameters seasonal variations but shock activity and wind stream activity act to decrease E layer ionization. It can be seen from Es layer parameters seasonal variations that wind stream activity effect is fairly independent of solar cycle. E and Es layers critical frequencies and virtual heights diurnal variations let us see the effects of the greenhouse gases in these layers.

West African equatorial ionospheric parameters climatology based on Ouagadougou ionosonde station data from June 1966 to February 1998

Adeniyi, J. O. and Adimula, I. A.: Comparing the F2 layer model of IRI with observations at Ibadan, Adv. Space Res., 15, 141–1444, 1995.; Adeniyi, J. O. and Radicella, S. M.: Diurnal variation of ionospheric profile parameters B0 and B1 for an equatorial station at low solar activity, J. Atmos. Solar-Terr. Phys., 60, 381–385, 1998a.; Adeniyi, J. O. and Radicella, S. M.: Variation of bottomside profile parameters B0 and B1 at high solar activity for a equatorial station, J. Atmos. Solar-Terr. Phys., 60, 1123–1127, 1998b.; Amory-Mazaudier, C., Le Huy, M., Cohen, Y., Doumbia, V., Bourdillon, A., Fleury, R., Fontaine, B., Ha Duyen, C., Kobea, A., Laroche, P., Lassudrie-Duchesne, P., Le Viet, H., Le Truong, T., Luu Viet, H., Menvielle, M., Nguyen Chien, T., Nguyen Xuan, A., Ouattara, F., Petitdidier, M., Pham Thi Thu, H., Pham Xuan, T., Philippon, N., Tran Thi, L., Vu Thien, H., and Vila, P.: Sun-Earth System Interaction studies over Vietnam: an international cooperative project, Ann. Geophys., 24, 3313–3327, 2006.; Appleton, E. V. and Barnett, M. A. F.: On wireless interference phenomena between ground waves and waves deviated by upper atmosphere, Proc. R. Soc., 113, 450–438, 1926.; Araujo-Pradere, E. A.: \textitfoF2 frequency bands in el cerrillo, Mexico during magnetically quiet conditions, Rev. Bras. Geof., 15, 2, doi:10.1590/S0102-261X1997000200006, 1997.; Balan, N., Bailey, G. J., and Jayachandran, B.: Ionospheric evidence for a nonlinear relationship between the solar EUV. and 10.7 cm fluxes during an intense solar cycle, Planet. Space Sci., 41, 141–145, 1993.; Bilitza, D., Obrou, O. K., Adeniyi, J. O., and Oladipo, O.: Variability of \textitfoF2 in the equatorial ionosphere, Adv. Space Res., 34, 1901–1906, 2004.; Bremer, J.: Investigations on long-term trends in the ionosphere with world-wide ionosonde observation, Adv. Radio Sci., 2, 253–258, 2004.; Breit, G. and Tuve, M. A.: A Test of the existence of the conducting layer, Phys. Rev., 28, 554–575, 1926.; Buonsanto, M. J.: Possible effects of the changing Earth-Sun distance on the upper atmosphere, S. Pacific J. Nat. Sci., 8, 58–65, 1986.; Chaman, L.: Contribution to F2 layer ionization due to the solar wind, J. Atmos. Solar-Terr. Phys., 59(17), 2203–2211, 1997.; Chaman, L.: Solar wind and equinoctial maxima in geophysical phenomena, J. Atmos. Solar-Terr. Phys., 60, 1017–1024, 1998.; Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth, Proc. Phys. Sot., 43, 26–45, 1931.; Chapman, S. and Bartels, J.: Geomagnetism, Oxford University Press New York, 1940.; Croom, S. A., Robbins, A. R., and Thomas, J. O.: Variation of the electron density in the ionosphere with magnetic dip., Nature, 185, 902–903, 1960.; Davies, K.: Ionospheric Radio Propagation, National Bureau of Standards Monograph, 80, 1965.; Fuller-Rowell, T. J., Codrescu, M. C., and Wilkinson, P.: Quantitative modeling of the ionospheric response to geomagnetic activity, Ann. Geophys., 18, 766–781, 2000.; Hall, C. M. and Hansen, T. L.: 20th Century operation of the Troms\textit$\phi $ ionosonde, Adv. Polar Upper Atmos. Res., 17,~155–166, 2003.; Hall, C. M., Brekke, A., and Cannon, P. S.: Climatic trends in E-region critical frequency and virtual height above Troms� (70° N, 10° E), Ann. Geophys., 25, 2351–2357, 2007.; Hawk, M.: Mid-Latitude Sporadic-E – A Review, 12 November 2001,, 2001.; Hergel, C. G., von Storch, H., Hasselmann, K., Sauter, B. D., Cubasch, U., and Jones, B. D.: Detected greenhouse-gas –induced climate change with an optimal fingerprint method, J. climate, 9, 2281–2306, 1996.; Huang Chun-ming: A certain behaviour of the inospheric F2 region at low latitudes, Radio. Sci., 9(5), 519–532, 1974.; Huang Yinn-Nien and Cheng, K.: Solar cycle variations of the equatorial ionospheric anomaly in total electron content in the Asians region, J. Geophys. Res., 101(A11), 24513–24520, 1996.; Jacc


Copyright © World Library Foundation. All rights reserved. eBooks from World Journals, Database of Academic Research Journals are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.