World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Optimal Estimation of the Surface Fluxes of Methyl Chloride Using a 3-d Global Chemical Transport Model : Volume 9, Issue 6 (23/12/2009)

By Xiao, X.

Click here to view

Book Id: WPLBN0003998375
Format Type: PDF Article :
File Size: Pages 52
Reproduction Date: 2015

Title: Optimal Estimation of the Surface Fluxes of Methyl Chloride Using a 3-d Global Chemical Transport Model : Volume 9, Issue 6 (23/12/2009)  
Author: Xiao, X.
Volume: Vol. 9, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Prinn, R. G., Simmonds, P. G., Fraser, P. J., Arduini, J., Mühle, J., Porter, L. W.,...Stordal, F. (2009). Optimal Estimation of the Surface Fluxes of Methyl Chloride Using a 3-d Global Chemical Transport Model : Volume 9, Issue 6 (23/12/2009). Retrieved from

Description: Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA 02139, USA. Methyl chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH3Cl. The Model of Atmospheric Transport and Chemistry (MATCH), driven by NCEP interannually varying meteorological data, is then used to simulate CH3Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method) to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100±470 Gg yr−1 with very large emissions of 2200±390 Gg yr−1 from tropical plants, which turn out to be the largest single source in the CH3Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH3Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model

Ayres, M. P. and Lombardero, M. J.: Assessing the consequences of global change for forest disturbance from herbivores and pathogens, Sci. Total Environ., 262, 263–286, 2000.; Balzter, H., Gerard, F. F., George, C. T., Rowland, C. S., Jupp, T. E., McCallum, I., Shvidenko, A., Nilsson, S., Sukhinin, A., Onuchin, A., and Schmullius, C.: Impact of the Arctic oscillation pattern on interannual forest fire variability in Central Siberia, Geophys. Res. Lett., 32, L14709, doi:10.1029/2005GL022526, 2005.; Butler, J. H., Battle, M., Bender, M., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C., Severinghaus, J., and Elkins, J. W.: A twentieth century record of atmospheric halocarbons in polar firn air, Nature, 399, 749–755, 1999.; Chen, Y.-H. and Prinn, R. G.: Atmospheric modeling of high- and low-frequency methane observations: Importance of interannually varying transport, J. Geophys. Res., 110, D10303, doi:10.1029/2004JD005542, 2005.; Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, J. Geophys. Res., 111, D10307, doi:10.1029/2005JD006058, 2006.; Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., Noblet, N. D., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529–533, 2005.; Clerbaux, C. and Cunnold, D. M.: Chapter 1 in: Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project Report No. 50, Geneva, Nairobi; Washington, DC, Brussells: NOAA, NASA, UNEP, WMO, EC., 1.1–1.63, 2006.; Cleveland, C. C., Holland, E. A., and Neff, J. C.: Temperature regulation of soil respiration in an alpine tundra ecosystem, paper presented at the Front Range Branch Annual Meeting, Am. Geophys. Union, Golden, Colo., 8–10 February, 1993.; Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S. T., Krummel, P. B., and O'Doherty, S.: Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000, J. Atmos. Chem., 45, 79-99, 2003.; Cox, M. L., Fraser, P. J., Sturrock, G. A., Siems, S. T., and Porter, L. W.: Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania, Atmos. Environ., 38(23), 3839–3852, 2004.; Cunnold, D. M., Prinn, R. G., Rasmussen, R. A., Simmonds, P. G., Alyea, F. N., Cardelino, C. A., Crawford, A. J., Fraser, P. J., and Rosen, R. D.: The Atmospheric Lifetime Experiment 3, Lifetime methodology and application to three years of CFCl3 Data, J. Geophys. Res., 88(C13), 8379–8400, 1983.; Graedel, T. E. and Keene, W. C.: The tropospheric budget of reactive chlorine, Global Biogeochem. Cy., 9, 47–77, 1995.; Graedel, T. E. and Keene, W. C.: The budget and cycle of Earth's natural chlorine, Pure Appl. Chem., 68, 1687–1689, 1996.; Graedel, T. E. and Keene, W. C.: Preface, J. Geophys. Res., 104(D7), 8331–8332, 1999.; Guenther, A., Hewitt, C., Erickson, N., Fall, D., Geron, R., Graedel, C., Harley, T., Klinger, P., Lerdau, L., McKay, M., Pierce, W. A., Scholes, T., Steinbrecher, B., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100(D5), 8873–8892, 1995.; Hamilton, J. T. G., McRoberts, W. C., Keppler, F., Kalin, R. M., and Harper, D. B.: Chloride methylation by plant pectin: An efficient environmentally significant process, Science, 301, 206–209, 2003.; Hao, W. M. and Liu, M.-H.: Spatial and temporal distribution of tropical biomass burning, Global Bio


Copyright © World Library Foundation. All rights reserved. eBooks from World Journals, Database of Academic Research Journals are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.